Abstract: Here is a summary of end conditions for cubic spline interpolation, as described in Matlab Spline Toolbox. The reference cited in that toolbox is A Practical Guide to Splines, (Applied Math. Sciences Vol. 27, Springer Verlag, New York(1978),xxiv + 392p).
|
with | 0£ n < N, | ||||||
|
with | 0£ n < N-1. |
Pn(x) = yn + an(x-xn) + bn(x-xn)2 + cn(x-xn)3 | (1) | |||
P'n(x) = an + 2bn(x-xn) + 3cn(x-xn)2 | (2) | |||
P''n(x) = 2bn + 6cn(x-xn) | (3) | |||
P'''n(x) = 6cn | (4) |
P'n(xn) : an = y'n | (5) | |||
P'n(xn+1) : y'n + 2bnhn + 3cnhn2 = y'n+1 | (6) | |||
Pn(xn) : yn = yn | (7) | |||
Pn(xn+1) : yn + y'nhn + bnhn2 + cnhn3 = yn+1 | (8) |
y'n + bn hn + cn hn2 = |
|
2 |
ì í î |
|
- y'n - cn hn2 |
ü ý þ |
+ 3 cn hn2 = y'n+1 - y'n |
P''n(xn) | = | 2 bn | (12) | |||||||||||||||||||||||
= |
|
(13) | ||||||||||||||||||||||||
= |
|
(14) |
P''n-1(xn) | = | 2 bn-1 + 6 cn-1 hn-1 | (15) | |||||||||||||||
= |
|
(16) |
hn y'n-1 + 2 (hn+hn-1)y'n + hn-1y'n+1 = 3 |
|
+ 3 |
|
(17) |
This document was translated from LATEX by HEVEA.